4/8 3D Deep Learning – Toward Learning the Compositional Structure in 3D Shapes (성민혁 교수/카이스트 전산학부)

작성자
kaistsoftware
작성일
2021-04-07 13:52
조회
12224
  • 강사 : 성민혁 교수 (카이스트 전산학부)  
  • 일시 : 2021. 4. 8 (목) 17:00~18:30
3D data arising from scanning with depth sensors or modeling by designers have a unique characteristic — it matches the actual physical form of an object as it presents in the real world. Hence, unlike 2D images containing a projected view, it directly enables understanding of how the objects are composed and structured in the physical space.

In this talk, I will first introduce some challenges remaining in 3D data processing and describe how deep learning techniques have been exploited to solve them. Then, for the specific case of understanding the compositional structure of 3D shapes, I'll present our novel methodologies based on learning from a large collection of data and demonstrate various downstream applications. The main ideas are organized into two parts: decomposition and composition. In the decomposition, I will first discuss some ideas of parsing 3D raw scanned data and decomposing them into geometric primitives. For solving the model estimation problem more robustly, I will propose an end-to-end neural network pipeline that combines the best features of supervised learning and classical optimization. Also, there exist multiple cases when the compositional structures (e.g., segmentation and keypoints) are given for each of the 3D shapes in the database but without any consistency. For such cases, I will introduce an autoencoder-style neural network that can bridge the information defined on independent shapes without the supervision of correspondences. Lastly, in the composition, I will show how a part-based representation of 3D objects, fusing a discrete and combinatorial global structure with continuous local geometry space, can facilitate creating and editing shapes by efficiently exploring the 3D object space. I will also end my talk by sharing my recent work on neural-network-based 3D content creation.
전체 143
번호 제목 작성자 작성일 추천 조회
공지사항
2025년 봄학기 콜로퀴엄 일정 안내
kaistsoftware | 2025.02.27 | 추천 0 | 조회 10321
kaistsoftware 2025.02.27 0 10321
82
5/26 R&BD를 위한 3T(TRM/TT/TRIZ) 연계방법론 (이상국 교수/가톨릭대학교 미디어기술콘텐츠학과)
kaistsoftware | 2022.05.23 | 추천 0 | 조회 12754
kaistsoftware 2022.05.23 0 12754
81
5/19 정밀의료를 위해서 인공지능이 정말로 뭘 할까? (신현정 교수/아주대학교 산업공학과)
kaistsoftware | 2022.05.17 | 추천 0 | 조회 10430
kaistsoftware 2022.05.17 0 10430
80
5/12 수학, 확률, 통계 그리고 AI와 ML (김병천 교수/KAIST 경영공학부)
kaistsoftware | 2022.05.13 | 추천 0 | 조회 10975
kaistsoftware 2022.05.13 0 10975
79
4/14 Deep Learning for Understanding the World like Humans (안성진 교수/KAIST 전산학부)
kaistsoftware | 2022.04.11 | 추천 0 | 조회 10865
kaistsoftware 2022.04.11 0 10865
78
4/7 자연언어처리와 지식그래표: 한국어와 글로벌 활동 (최기선 교수/KAIST 전산학부)
kaistsoftware | 2022.04.04 | 추천 0 | 조회 10267
kaistsoftware 2022.04.04 0 10267
77
3/31 와인의 세계 (오영환 교수/KAIST 전산학부)
kaistsoftware | 2022.03.28 | 추천 0 | 조회 11077
kaistsoftware 2022.03.28 0 11077
76
3/24 Recommendation Systems in Biomedicine (송길태 교수/부산대학교 정보컴퓨터공학부)
kaistsoftware | 2022.03.28 | 추천 0 | 조회 11138
kaistsoftware 2022.03.28 0 11138
75
3/17 AI로 신제품 설계하기 (강남우 교수/KAIST 조천식녹색교통대학원)
kaistsoftware | 2022.03.15 | 추천 0 | 조회 11593
kaistsoftware 2022.03.15 0 11593
74
3/10 교육분야의 데이터 활용과 과제 (한정윤 박사/한국교육개발원 미래교육연구본부)
kaistsoftware | 2022.03.14 | 추천 0 | 조회 12418
kaistsoftware 2022.03.14 0 12418
73
2022년 봄학기 콜로퀴엄 일정 안내
kaistsoftware | 2022.03.14 | 추천 0 | 조회 13538
kaistsoftware 2022.03.14 0 13538